1,943 research outputs found

    The crystal and molecular structure of Hydridotetrakis(diethyl phenylphosphonite)cobalt(I)

    Get PDF
    An X-ray structure determination of the title compound shows that the co-ordination about the cobalt atom is approximately trigonal bipyramidal; n.m.r. data indicate that the complex is non-rigid in solution

    Dynamics of a two-level system coupled with a quantum oscillator in the very strong coupling limit

    Full text link
    The time-dependent behavior of a two-level system interacting with a quantum oscillator system is analyzed in the case of a coupling larger than both the energy separation between the two levels and the energy of quantum oscillator (Ω<ω<λ\Omega < \omega < \lambda , where Ω\Omega is the frequency of the transition between the two levels, ω\omega is the frequency of the oscillator, and λ\lambda is the coupling between the two-level system and the oscillator). Our calculations show that the amplitude of the expectation value of the oscillator coordinate decreases as the two-level system undergoes the transition from one level to the other, while the transfer probability between the levels is staircase-like. This behavior is explained by the interplay between the adiabatic and the non-adiabatic regimes encountered during the dynamics with the system acting as a quantum counterpart of the Landau-Zener model. The transition between the two levels occurs as long as the expectation value of the oscillator coordinate is driven close to zero. On the contrary, if the initial conditions are set such that the expectation values of the oscillator coordinate are far from zero, the system will remain locked on one level.Comment: 4 pages, 4 figures, to be published in Physical Review

    Study of deformation of coated tools in orthogonal metal cutting process using FEA

    Get PDF
    The paper presents an investigation into the performance characteristics of electrical discharge machined cemented carbide tool inserts coated with titanium nitride (TiN). In this study, finite element analysis (FEA) software, SolidWorks CosmosExpress was used to study load bearing capacity of the cutting tool extensively. Results from cutting tests indicate increased tool life and better surface finish and reduce power loading by 18% when the tool was operated at 40% faster than the recommended standard speed. When the tool begins to wear out, tool wear characteristics did not affect dimensional accuracy of the work-piece. The surface enhancement, called „residual island‟ treatment, produces an undulating surface topography on the tool. As the tool wears, „islands‟ of residual titanium nitride remained in the valleys, which continued to provide wear resistance. It is expected that residual island effect would occur for most, if not all, types of coating. It was therefore concluded that TiN coatings if applied to turning tools with crater-like surface structures provide satisfactory lubricating properties which help in providing protection to the tool substrates against friction and wear

    Development of high temperature refractory-based multi-principle-component alloys by thermodynamic calculations and rapid alloy prototyping

    Get PDF
    Recently, new refractory-based high entropy alloys (HEAs) have been investigated for potential use as high temperature structural alloys, and some alloys exhibit excellent high temperature strength and ductility. While the high entropy alloy community is generally concerned with obtaining single phase solid-solution phases, secondary strengthening phases are usually required to achieve an adequate balance of mechanical and physical properties for structural applications. This contribution will report on new Mo,Nb-based alloys that have been developed using HEA design guidelines, as well as new tools that enable thermodynamic property predictions and rapid alloy prototyping and assessment. An elemental palette of Mo-Nb-Hf-Ta-Ti-V-W-Zr was chosen in order to promote the formation of a single body-centered cubic (BCC) solid-solution phase upon solidification, which facilitates homogenization heat treatments. Al, Cr, and Si were also included to promote secondary phase formation. These 11 elements were then used to calculate the phases present and their reaction temperatures of 3-, 4-, 5-, and 6-component alloy compositions from all of the available PandatTM databases. Mo and Nb were required to be present in each alloy composition in order to maintain modest alloy costs and densities. Please click Additional Files below to see the full abstract

    A Genetic Algorithm Approach to Optimal Sizing and Placement of Distributed Generation on Nigerian Radial Feeders

    Get PDF
    Mitigating power loss and voltage profile problems on radial distribution networks has been a major challenge to distribution system operators. While deployment of distributed generation, as compensators, has made a suitable solution option, optimum placement and sizing of the compensators has been a concern and it has thus been receiving great attention. Meta-heuristic algorithms have been found efficacious in this respect, yet the use of the algorithms in addressing problems of radial feeders is still comparatively low in Nigeria where analytical and numerical programming methods are common. Hence; the use of genetic algorithm to site and size distributed generator for real-time power loss reduction and voltage profile improvement on the Nigerian secondary distribution networks is presented. Backward-forward sweep load flow analysis, together with loss sensitivity factor, is deployed to identify the buses suitable for the installation of the distributed generation, while the algorithm is employed in estimating the optimum size. This approach is tested on the standard IEEE 15-bus system and validated using a Nigerian 11 kV feeder. The result obtained on the IEEE test system shows 183 kW loss using the compensator, as compared to 436 kW loss without the compensator; while on the Nigerian network the loss with the compensator was 4.99 kW, in comparison with no-compensation loss of 10.47kW. By the approach of this study, real power loss on the Nigerian feeder decreased by 52.3% together with energy cost reduction from N658,789.12 to N314,227.38. Likewise the minimum bus voltage magnitude and the voltage stability index of the network are improved to acceptable limits. This approach is therefore recommended as capable of strengthening the performance of the Nigerian radial distribution system

    A Spread-Spectrum SQUID Multiplexer

    Full text link
    The Transition-Edge Sensors (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon arrival rates.Comment: 12 pages, 2 figures, Submitted to the Journal of Low Temperature Physics (Proceedings of the 17th International Workshop on Low Temperature Detectors

    Menstrual and reproductive factors in relation to ovarian cancer risk

    Get PDF
    We assessed menstrual and reproductive factors in relation to ovarian cancer risk in a large, population-based, case–control study. 563 cases in Massachusetts and New Hampshire were ascertained from hospitals and statewide tumour registries; control women (n= 523) were selected through random digit dialing and matched to case women by age and telephone sampling unit. We used multivariate logistic regression to evaluate factors in relation to risk of ovarian cancer and the major tumour histologic subtypes. Ovarian cancer risk was reduced among parous women, relative to nulliparous women (OR = 0.4; 95% CI = 0.3−0.6). Among parous women, higher parity (P= 0.0006), increased age at first (P= 0.03) or last (P= 0.05) birth, and time since last birth (P= 0.04) were associated with reduced risk. Early pregnancy losses, abortions, and stillbirths were unrelated to risk, but preterm, term, and twin births were protective. Risk was lower among women who had breast-fed, relative to those who had not (OR = 0.7; 95% CI = 0.5–1.0), but the average duration of breast-feeding per child was unrelated to risk (P for trend = 0.21). Age at menarche and age at menopause were unrelated to risk overall, although increasing menarcheal age was protective among premenopausal women (P= 0.02). Menstrual cycle characteristics and symptoms were generally unrelated to risk, although cycle-related insomnia was associated with decreased risk (OR = 0.5; 95% CI = 0.3–0.8). We found no association between the type of sanitary product used during menstruation and ovarian cancer risk. In analyses by histologic subtype, reproductive and menstrual factors had most effect on risk of endometrioid/clear cell tumours, and least influential with regard to risk of mucinous tumours. Overall, our findings offer some support to current hypotheses of ovarian pathogenesis, and show aetiologic differences among the tumour subtypes. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Deformation correlations, stress field switches and evolution of an orogenic intersection: the Pan-African Kaoko-Damara orogenic junction, Namibia

    Get PDF
    Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System. Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing, and switches between different deformation events. Horizontal principle compressive stress rotated clockwise ∼180° in total during Kaoko Belt evolution, and ∼135° during Damara Belt evolution. At most stages, stress field variation is progressive and can be attributed to events within the Damara Orogenic System, caused by changes in relative trajectories of the interacting Rio De La Plata, Congo, and Kalahari Cratons. Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ∼590 Ma, involving E–W directed shortening, progressing through different transpressional states with ∼45° rotation of the stress field to strike-slip shear under NW–SE shortening at ∼550–530 Ma. Damaran orogenesis evolved from collision at ∼555–550 Ma with NW–SE directed shortening in common with the Kaoko Belt, and subsequently evolved through ∼90° rotation of the stress field to NE–SW shortening at ∼512–508 Ma. Both Kaoko and Damara orogenic fronts were operating at the same time, with all three cratons being coaxially convergent during the 550–530 Ma period; Rio De La Plata directed SE against the Congo Craton margin, and both together over-riding the Kalahari Craton margin also towards the SE. Progressive stress field rotation was punctuated by rapid and significant switches at ∼530–525 Ma, ∼508 Ma and ∼505 Ma. These three events included: (1) Culmination of main phase orogenesis in the Damara Belt, coinciding with maximum burial and peak metamorphism at 530–525 Ma. This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt. Principle compressive stress switched from NW–SE to NNW–SSE shortening in both Kaoko and Damara Belts at this time. This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field, and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt. (2) A sudden switch to E–W directed shortening at ∼508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System, most plausibly from arc obduction along the orogenic margin of Gondwana (Ross-Delamerian Orogen). (3) This imposed stress field established a N–S extension direction exploited by decompression melts, switch to vertical shortening, and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ∼505 Ma, producing an extensional metamorphic core complex across the Central Zone

    The optical counterpart to gamma-ray burst GRB970228 observed using the Hubble Space Telescope

    Get PDF
    Although more than 2,000 astronomical gamma-ray bursts (GRBs) have been detected, and numerous models proposed to explain their occurrence, they have remained enigmatic owing to the lack of an obvious counterpart at other wavelengths. The recent ground-based detection of a transient source in the vicinity of GRB 970228 may therefore have provided a breakthrough. The optical counterpart appears to be embedded in an extended source which, if a galaxy as has been suggested, would lend weight to those models that place GRBs at cosmological distances. Here we report the observations using the Hubble Space Telescope of the transient counterpart and extended source 26 and 39 days after the initial gamma-ray outburst. We find that the counterpart has faded since the initial detection (and continues to fade), but the extended source exhibits no significant change in brightness between the two dates of observations reported here. The size and apparent constancy between the two epochs of HST observations imply that it is extragalactic, but its faintness makes a definitive statement about its nature difficult. Nevertheless, the decay profile of the transient source is consistent with a popular impulsive-fireball model, which assumes a merger between two neutron stars in a distant galaxy.Comment: 11 pages + 2 figures. To appear in Nature (29 May 1997 issue
    corecore